A209774 Triangle of coefficients of polynomials v(n,x) jointly generated with A209773; see the Formula section.
1, 2, 3, 2, 7, 8, 3, 12, 25, 21, 3, 19, 56, 84, 55, 4, 26, 103, 227, 269, 144, 4, 36, 169, 486, 848, 833, 377, 5, 45, 259, 914, 2078, 2999, 2518, 987, 5, 58, 372, 1565, 4393, 8277, 10192, 7475, 2584, 6, 69, 518, 2503, 8342, 19420, 31269, 33600, 21881
Offset: 1
Examples
First five rows: 1 2...3 2...7....8 3...12...25...21 3...19...56...84...55 First three polynomials v(n,x): 1, 2 + 3x , 2 + 7x + 8x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209773 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209774 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments