cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209816 Number of partitions of 2n in which every part is also, the number of partitions of 2 into rational numbers a/b such that 0 and b divides n.

This page as a plain text file.
%I A209816 #62 Oct 30 2021 15:04:46
%S A209816 1,3,7,15,30,58,105,186,318,530,863,1380,2164,3345,5096,7665,11395,
%T A209816 16765,24418,35251,50460,71669,101050,141510,196888,272293,374423,
%U A209816 512081,696760,943442,1271527,1706159,2279700,3033772,4021695,5311627,6990367,9168321
%N A209816 Number of partitions of 2n in which every part is <n+1; also, the number of partitions of 2 into rational numbers a/b such that 0<a<=b<=n and b divides n.
%C A209816 Also, the number of partitions of 3n in which n is the maximal part.
%C A209816 Also, the number of partitions of 3n into n parts. - _Seiichi Manyama_, May 07 2018
%C A209816 Also the number of multigraphical partitions of 2n, i.e., integer partitions that comprise the multiset of vertex-degrees of some multigraph. - _Gus Wiseman_, Oct 24 2018
%C A209816 Also number of partitions of 2n with at most n parts. Conjugate partitions map one to one to partitions of 2*n with each part <= n. - _Wolfdieter Lang_, May 21 2019
%H A209816 Alois P. Heinz, <a href="/A209816/b209816.txt">Table of n, a(n) for n = 1..1000</a>
%H A209816 Gus Wiseman, <a href="/A209816/a209816.png">Multigraphs realizing each of the a(4) = 15 multigraphical partitions of 8.</a>
%H A209816 Gus Wiseman, <a href="/A209816/a209816_1.png">Multigraphs realizing each of the a(5) = 30 multigraphical partitions of 10.</a>
%F A209816 a(n) = A000041(2*n)-A000070(n-1). - _Matthew Vandermast_, Jul 16 2012
%F A209816 a(n) = Sum_{k=1..n} A008284(2*n, k) = A000041(2*n) - A000070(n-1), for n >= 1. - _Wolfdieter Lang_, May 21 2019
%e A209816 The 7 partitions of 6 with parts <4 are as follows:
%e A209816 3+3, 3+2+1, 3+1+1+1
%e A209816 2+2+2, 2+2+1+1, 2+1+1+1+1
%e A209816 1+1+1+1+1+1.
%e A209816 Matching partitions of 2 into rationals as described:
%e A209816 1 + 1
%e A209816 1 + 3/3 + 1/3
%e A209816 1 + 1/3 + 1/3 + 1/3
%e A209816 2/3 + 2/3 + 2/3
%e A209816 2/3 + 2/3 + 1/3 + 1/3
%e A209816 2/3 + 1/3 + 1/3 + 1/3 + 1/3
%e A209816 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3.
%e A209816 From _Seiichi Manyama_, May 07 2018: (Start)
%e A209816 n | Partitions of 3n into n parts
%e A209816 --+-------------------------------------------------
%e A209816 1 | 3;
%e A209816 2 | 5+1, 4+2, 3+3;
%e A209816 3 | 7+1+1, 6+2+1, 5+3+1, 5+2+2, 4+4+1, 4+3+2, 3+3+3; (End)
%e A209816 From _Gus Wiseman_, Oct 24 2018: (Start)
%e A209816 The a(1) = 1 through a(4) = 15 partitions:
%e A209816   (11)  (22)    (33)      (44)
%e A209816         (211)   (222)     (332)
%e A209816         (1111)  (321)     (422)
%e A209816                 (2211)    (431)
%e A209816                 (3111)    (2222)
%e A209816                 (21111)   (3221)
%e A209816                 (111111)  (3311)
%e A209816                           (4211)
%e A209816                           (22211)
%e A209816                           (32111)
%e A209816                           (41111)
%e A209816                           (221111)
%e A209816                           (311111)
%e A209816                           (2111111)
%e A209816                           (11111111)
%e A209816 (End)
%p A209816 b:= proc(n, i) option remember;
%p A209816       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
%p A209816     end:
%p A209816 a:= n-> b(2*n, n):
%p A209816 seq(a(n), n=1..50);  # _Alois P. Heinz_, Jul 09 2012
%t A209816 f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n &]]; Table[f[n], {n, 1, 30}] (* A209816 *)
%t A209816 Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,2*n}],{n,1,20}] (* _Vaclav Kotesovec_, May 25 2015 *)
%t A209816 Table[Length@IntegerPartitions[3n, {n}], {n, 25}] (* _Vladimir Reshetnikov_, Jul 24 2016 *)
%t A209816 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *)
%o A209816 (Haskell)
%o A209816 a209816 n = p [1..n] (2*n) where
%o A209816    p _          0 = 1
%o A209816    p []         _ = 0
%o A209816    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
%o A209816 -- _Reinhard Zumkeller_, Nov 14 2013
%Y A209816 Cf. A000041, A000070, A000569, A008284, A025065, A079122, A096373, A147878, A209815, A320911, A320921, A320924.
%K A209816 nonn
%O A209816 1,2
%A A209816 _Clark Kimberling_, Mar 13 2012
%E A209816 More terms from _Alois P. Heinz_, Jul 09 2012