This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209816 #62 Oct 30 2021 15:04:46 %S A209816 1,3,7,15,30,58,105,186,318,530,863,1380,2164,3345,5096,7665,11395, %T A209816 16765,24418,35251,50460,71669,101050,141510,196888,272293,374423, %U A209816 512081,696760,943442,1271527,1706159,2279700,3033772,4021695,5311627,6990367,9168321 %N A209816 Number of partitions of 2n in which every part is <n+1; also, the number of partitions of 2 into rational numbers a/b such that 0<a<=b<=n and b divides n. %C A209816 Also, the number of partitions of 3n in which n is the maximal part. %C A209816 Also, the number of partitions of 3n into n parts. - _Seiichi Manyama_, May 07 2018 %C A209816 Also the number of multigraphical partitions of 2n, i.e., integer partitions that comprise the multiset of vertex-degrees of some multigraph. - _Gus Wiseman_, Oct 24 2018 %C A209816 Also number of partitions of 2n with at most n parts. Conjugate partitions map one to one to partitions of 2*n with each part <= n. - _Wolfdieter Lang_, May 21 2019 %H A209816 Alois P. Heinz, <a href="/A209816/b209816.txt">Table of n, a(n) for n = 1..1000</a> %H A209816 Gus Wiseman, <a href="/A209816/a209816.png">Multigraphs realizing each of the a(4) = 15 multigraphical partitions of 8.</a> %H A209816 Gus Wiseman, <a href="/A209816/a209816_1.png">Multigraphs realizing each of the a(5) = 30 multigraphical partitions of 10.</a> %F A209816 a(n) = A000041(2*n)-A000070(n-1). - _Matthew Vandermast_, Jul 16 2012 %F A209816 a(n) = Sum_{k=1..n} A008284(2*n, k) = A000041(2*n) - A000070(n-1), for n >= 1. - _Wolfdieter Lang_, May 21 2019 %e A209816 The 7 partitions of 6 with parts <4 are as follows: %e A209816 3+3, 3+2+1, 3+1+1+1 %e A209816 2+2+2, 2+2+1+1, 2+1+1+1+1 %e A209816 1+1+1+1+1+1. %e A209816 Matching partitions of 2 into rationals as described: %e A209816 1 + 1 %e A209816 1 + 3/3 + 1/3 %e A209816 1 + 1/3 + 1/3 + 1/3 %e A209816 2/3 + 2/3 + 2/3 %e A209816 2/3 + 2/3 + 1/3 + 1/3 %e A209816 2/3 + 1/3 + 1/3 + 1/3 + 1/3 %e A209816 1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3. %e A209816 From _Seiichi Manyama_, May 07 2018: (Start) %e A209816 n | Partitions of 3n into n parts %e A209816 --+------------------------------------------------- %e A209816 1 | 3; %e A209816 2 | 5+1, 4+2, 3+3; %e A209816 3 | 7+1+1, 6+2+1, 5+3+1, 5+2+2, 4+4+1, 4+3+2, 3+3+3; (End) %e A209816 From _Gus Wiseman_, Oct 24 2018: (Start) %e A209816 The a(1) = 1 through a(4) = 15 partitions: %e A209816 (11) (22) (33) (44) %e A209816 (211) (222) (332) %e A209816 (1111) (321) (422) %e A209816 (2211) (431) %e A209816 (3111) (2222) %e A209816 (21111) (3221) %e A209816 (111111) (3311) %e A209816 (4211) %e A209816 (22211) %e A209816 (32111) %e A209816 (41111) %e A209816 (221111) %e A209816 (311111) %e A209816 (2111111) %e A209816 (11111111) %e A209816 (End) %p A209816 b:= proc(n, i) option remember; %p A209816 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) %p A209816 end: %p A209816 a:= n-> b(2*n, n): %p A209816 seq(a(n), n=1..50); # _Alois P. Heinz_, Jul 09 2012 %t A209816 f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n &]]; Table[f[n], {n, 1, 30}] (* A209816 *) %t A209816 Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,2*n}],{n,1,20}] (* _Vaclav Kotesovec_, May 25 2015 *) %t A209816 Table[Length@IntegerPartitions[3n, {n}], {n, 25}] (* _Vladimir Reshetnikov_, Jul 24 2016 *) %t A209816 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Aug 29 2016, after _Alois P. Heinz_ *) %o A209816 (Haskell) %o A209816 a209816 n = p [1..n] (2*n) where %o A209816 p _ 0 = 1 %o A209816 p [] _ = 0 %o A209816 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A209816 -- _Reinhard Zumkeller_, Nov 14 2013 %Y A209816 Cf. A000041, A000070, A000569, A008284, A025065, A079122, A096373, A147878, A209815, A320911, A320921, A320924. %K A209816 nonn %O A209816 1,2 %A A209816 _Clark Kimberling_, Mar 13 2012 %E A209816 More terms from _Alois P. Heinz_, Jul 09 2012