A209819 Triangle of coefficients of polynomials u(n,x) jointly generated with A209820; see the Formula section.
1, 1, 3, 1, 5, 7, 1, 5, 17, 17, 1, 5, 21, 53, 41, 1, 5, 21, 81, 157, 99, 1, 5, 21, 89, 289, 449, 239, 1, 5, 21, 89, 361, 973, 1253, 577, 1, 5, 21, 89, 377, 1389, 3133, 3433, 1393, 1, 5, 21, 89, 377, 1565, 5085, 9745, 9273, 3363, 1, 5, 21, 89, 377, 1597, 6285
Offset: 1
Examples
First five rows: 1 1...3 1...5...7 1...5...17...17 1...5...21...53...41 First three polynomials u(n,x): 1, 1 + 3x, 1 + 5x + 7x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209819 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209820 *)
Formula
u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments