A209820 Triangle of coefficients of polynomials v(n,x) jointly generated with A209819; see the Formula section.
1, 2, 2, 2, 6, 5, 2, 8, 18, 12, 2, 8, 30, 52, 29, 2, 8, 34, 104, 146, 70, 2, 8, 34, 136, 342, 402, 169, 2, 8, 34, 144, 514, 1080, 1090, 408, 2, 8, 34, 144, 594, 1848, 3306, 2920, 985, 2, 8, 34, 144, 610, 2360, 6370, 9872, 7746, 2378, 2, 8, 34, 144, 610, 2552
Offset: 1
Examples
First five rows: 1 2...2 2...6...5 2...8...18...12 2...8...30...52...29 First three polynomials v(n,x): 1, 2 + 2x , 2 + 6x + 5x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209819 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209820 *)
Formula
u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments