This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209830 #22 Oct 26 2024 04:21:47 %S A209830 1,1,2,1,5,5,1,7,18,13,1,10,35,59,34,1,12,61,147,185,89,1,15,90,302, %T A209830 558,564,233,1,17,129,527,1324,1986,1685,610,1,20,170,854,2653,5350, %U A209830 6761,4957,1597,1,22,222,1278,4811,12066,20383,22277,14406,4181,1 %N A209830 Triangle of coefficients of polynomials u(n,x) jointly generated with A209831; see the Formula section. %C A209830 Each row begins with 1 and ends with an odd-indexed Fibonacci number. %C A209830 Alternating row sums: 1,-1,1,-1,1,-1,1,-1,... %C A209830 For a discussion and guide to related arrays, see A208510. %C A209830 Subtriangle of the triangle given by (1, 0, 1/2, -3/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 16 2012 %F A209830 u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x), %F A209830 v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x), %F A209830 where u(1,x)=1, v(1,x)=1. %F A209830 As DELTA-triangle with 0 <= k <= n: G.f.: (1+x-3*y*x-3*y*x^2+y^2*x^2)/(1-3*y*x-x^2-2*y*x^2+y^2*x^2). - _Philippe Deléham_, Mar 16 2012 %F A209830 As DELTA-triangle: T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Mar 16 2012 %e A209830 First five rows: %e A209830 1; %e A209830 1, 2; %e A209830 1, 5, 5; %e A209830 1, 7, 18, 13; %e A209830 1, 10, 35, 59, 34; %e A209830 First three polynomials u(n,x): %e A209830 1 %e A209830 1 + 2x %e A209830 1 + 5x + 5x^2. %e A209830 From _Philippe Deléham_, Mar 16 2012: (Start) %e A209830 (1, 0, 1/2, -3/2, 0, 0, ...) DELTA (0, 2, 1/2, 1/2, 0, 0, ...) begins: %e A209830 1; %e A209830 1, 0; %e A209830 1, 2, 0; %e A209830 1, 5, 5, 0; %e A209830 1, 7, 18, 13, 0; %e A209830 1, 10, 35, 59, 34, 0; (End) %t A209830 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209830 u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209830 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; %t A209830 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209830 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209830 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209830 TableForm[cu] %t A209830 Flatten[%] (* A209830 *) %t A209830 Table[Expand[v[n, x]], {n, 1, z}] %t A209830 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209830 TableForm[cv] %t A209830 Flatten[%] (* A209831 *) %Y A209830 Cf. A209831, A208510. %K A209830 nonn,tabl %O A209830 1,3 %A A209830 _Clark Kimberling_, Mar 13 2012