This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209831 #14 Jan 26 2020 21:06:02 %S A209831 1,1,3,1,5,8,1,8,20,21,1,10,41,71,55,1,13,65,176,235,144,1,15,99,338, %T A209831 684,744,377,1,18,135,590,1536,2490,2285,987,1,20,182,926,3031,6382, %U A209831 8651,6865,2584,1,23,230,1388,5359,14065,24875,29020,20284,6765 %N A209831 Triangle of coefficients of polynomials v(n,x) jointly generated with A209830; see the Formula section. %C A209831 Each row begins with 1 and ends with an even-indexed Fibonacci number. %C A209831 Alternating row sums: signed powers of 2. %C A209831 For a discussion and guide to related arrays, see A208510. %C A209831 Subtriangle of the triangle given by (1, 0, -1/3, -2/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 3, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 16 2012 %F A209831 u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x), %F A209831 v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x), %F A209831 where u(1,x)=1, v(1,x)=1. %F A209831 As DELTA-triangle T(n,k) with 0 <= k <= n: %F A209831 T(n,k) = 3*T(n-1,k-1) + T(n-2,k) + 2*T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Mar 16 2012 %F A209831 As DELTA-triangle with 0 <= k <= n: g.f.: (1 + x - 3*y*x - 2*y*x^2 + y^2*x^2)/(1 - 3*y*x - x^2 - 2*y*x^2 + y^2*x^2). - _Philippe Deléham_, Mar 16 2012 %e A209831 From _Philippe Deléham_, Mar 16 2012: (Start) %e A209831 First five rows: %e A209831 1; %e A209831 1, 3; %e A209831 1, 5, 8; %e A209831 1, 8, 20, 21; %e A209831 1, 10, 41, 71, 55; %e A209831 First three polynomials v(n,x): %e A209831 1 %e A209831 1 + 3x %e A209831 1 + 5x + 8x^2. %e A209831 (1, 0, -1/3, -2/3, 0, 0, ...) DELTA (0, 3, -1/3, 1/3, 0, 0, ...) begins: %e A209831 1; %e A209831 1, 0; %e A209831 1, 3, 0; %e A209831 1, 5, 8, 0; %e A209831 1, 8, 20, 21, 0; %e A209831 1, 10, 41, 71, 55, 0; (End) %t A209831 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A209831 u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]; %t A209831 v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; %t A209831 Table[Expand[u[n, x]], {n, 1, z/2}] %t A209831 Table[Expand[v[n, x]], {n, 1, z/2}] %t A209831 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A209831 TableForm[cu] %t A209831 Flatten[%] (* A209830 *) %t A209831 Table[Expand[v[n, x]], {n, 1, z}] %t A209831 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A209831 TableForm[cv] %t A209831 Flatten[%] (* A209831 *) %Y A209831 Cf. A209830, A208510. %K A209831 nonn,tabl %O A209831 1,3 %A A209831 _Clark Kimberling_, Mar 13 2012