cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A209862 Permutation of nonnegative integers which maps A209642 into ascending order (A209641).

This page as a plain text file.
%I A209862 #26 Sep 15 2021 09:51:45
%S A209862 0,1,2,3,4,5,6,7,8,9,10,12,11,13,14,15,16,17,18,20,24,19,21,25,22,26,
%T A209862 28,23,27,29,30,31,32,33,34,36,40,48,35,37,41,49,38,42,50,44,52,56,39,
%U A209862 43,51,45,53,57,46,54,58,60,47,55,59,61,62,63,64,65,66,68,72,80,96,67,69,73,81,97,70,74,82,98,76,84,100,88,104,112,71,75,83
%N A209862 Permutation of nonnegative integers which maps A209642 into ascending order (A209641).
%C A209862 Conjecture: For all n, a(A054429(n)) = A054429(a(n)), i.e. A054429 acts as a homomorphism (automorphism) of the cyclic group generated by this permutation. This implies also a weaker conjecture given in A209860.
%C A209862 From _Gus Wiseman_, Aug 24 2021: (Start)
%C A209862 As a triangle with row lengths 2^n, T(n,k) for n > 0 appears (verified up to n = 2^15) to be the unique nonnegative integer whose binary indices are the k-th subset of {1..n} containing n. Here, a binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion, and sets are sorted first by length, then lexicographically. For example, the triangle begins:
%C A209862    1
%C A209862    2  3
%C A209862    4  5  6  7
%C A209862    8  9 10 12 11 13 14 15
%C A209862   16 17 18 20 24 19 21 25 22 26 28 23 27 29 30 31
%C A209862 Mathematica: Table[Total[2^(Append[#,n]-1)]&/@Subsets[Range[n-1]],{n,5}]
%C A209862 Row lengths are A000079 (shifted right). Also Column k = 1.
%C A209862 Row sums are A010036.
%C A209862 Using reverse-lexicographic order gives A059893.
%C A209862 Using lexicographic order gives A059894.
%C A209862 Taking binary indices to prime indices gives A339195 (or A019565).
%C A209862 The ordering of sets is A344084.
%C A209862 A version using Heinz numbers is A344085.
%C A209862 (End)
%H A209862 Antti Karttunen, <a href="/A209862/b209862.txt">Table of n, a(n) for n = 0..32767</a>
%H A209862 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A209862 a(n) = A209859(A036044(A209641(n))) = A209859(A056539(A209641(n))).
%e A209862 From _Gus Wiseman_, Aug 24 2021: (Start)
%e A209862 The terms, their binary expansions, and their binary indices begin:
%e A209862    0:      ~ {}
%e A209862    1:    1 ~ {1}
%e A209862    2:   10 ~ {2}
%e A209862    3:   11 ~ {1,2}
%e A209862    4:  100 ~ {3}
%e A209862    5:  101 ~ {1,3}
%e A209862    6:  110 ~ {2,3}
%e A209862    7:  111 ~ {1,2,3}
%e A209862    8: 1000 ~ {4}
%e A209862    9: 1001 ~ {1,4}
%e A209862   10: 1010 ~ {2,4}
%e A209862   12: 1100 ~ {3,4}
%e A209862   11: 1011 ~ {1,2,4}
%e A209862   13: 1101 ~ {1,3,4}
%e A209862   14: 1110 ~ {2,3,4}
%e A209862   15: 1111 ~ {1,2,3,4}
%e A209862 (End)
%Y A209862 Inverse permutation: A209861. Cf. A209860, A209863, A209864, A209865, A209866, A209867, A209868.
%Y A209862 Cf. A010036, A026793, A048793, A111059, A147655, A246688, A246867, A261144, A272020, A294648, A339360.
%K A209862 nonn
%O A209862 0,3
%A A209862 _Antti Karttunen_, Mar 24 2012