This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209873 #15 Jan 19 2019 15:53:40 %S A209873 0,0,3,4,7,2,8,2,5,0,4,3,3,8,6,7,0,8,1,4,7,9,1,7,6,7,3,4,2,4,6,2,3,0, %T A209873 5,2,7,2,7,3,7,4,5,2,4,3,1,4,7,8,0,7,4,0,5,5,1,1,2,3,8,1,4,1,5,8,4,0, %U A209873 3,6,9,6,8,5,5,8,2,0,2,4,3,6,2,7,7,9 %N A209873 Decimal expansion of Sum{k=2..infinity} (-1)^k/A165559(k). %C A209873 Alternating sum of the reciprocals of the partial products of the arithmetic derivatives. %H A209873 Ray Chandler, <a href="/A209873/b209873.txt">Table of n, a(n) for n = 0..85</a> (corrected by Ray Chandler, Jan 19 2019) %e A209873 0.003472825... %p A209873 with(numtheory); %p A209873 P:=proc(i) %p A209873 local a, b, f, n, p, pfs; %p A209873 a:=0; b:=1; %p A209873 for n from 2 by 1 to i do %p A209873 f:= A003415(n); %p A209873 b:=b*f; a:=a+(-1)^n/b; %p A209873 od; %p A209873 print(evalf(a, 300)); %p A209873 end: %p A209873 P(1000); %t A209873 digits = 84; d[0] = d[1] = 0; d[n_] := d[n] = n*Total[Apply[#2/#1 &, FactorInteger[n], {1}]]; p[n_] := p[n] = Sum[(-1)^k/Product[d[j], {j, 2, k}], {k, 2, n}] // RealDigits[#, 10, digits] & // First; p[digits]; p[n = 2*digits]; While[p[n] != p[n/2], n = 2*n]; Join[{0, 0}, p[n]] (* _Jean-François Alcover_, Feb 21 2014 *) %Y A209873 Cf. A003415, A190144, A190145, A190146, A190147. %K A209873 nonn,cons %O A209873 0,3 %A A209873 _Paolo P. Lava_, Apr 02 2012