A209877 a(n) = A209874(n)/2: Least m > 0 such that 4*m^2 = -1 modulo the Pythagorean prime A002144(n).
1, 4, 2, 6, 3, 16, 15, 25, 23, 17, 11, 5, 38, 49, 50, 22, 14, 40, 81, 56, 7, 61, 72, 32, 8, 41, 30, 114, 69, 144, 57, 74, 68, 21, 52, 137, 167, 10, 133, 196, 127, 191, 174, 24, 104, 143, 26, 59, 43, 12, 258, 238, 289, 97, 77, 252, 53, 29, 13, 283, 48, 190, 335, 361, 31, 228, 291, 159, 263, 123, 260, 325, 363, 247, 162
Offset: 1
Keywords
Examples
a(1)=1 since A002144(1)=5 and 4*1^2+1 is divisible by 5; as a consequence 4*(5k+/-1)^2+1 = 100k^2 +/- 40k + 5 is divisible by 5 for all k. a(2)=4 since A002144(2)=13 and 4*4^2+1 = 65 is divisible by 13, while 4*1^1+1=5, 4*2^2+1=17 and 4*3^2+1=37 are not. As a consequence, 4*(13k+/-4)^2+1 = 13(...)+4*4^1+1 is divisible by 13 for all k.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
f:= proc(p) local m; if not isprime(p) then return NULL fi; m:= numtheory:-msqrt(-1/4, p); min(m,p-m); end proc: map(f, [seq(i,i=5..1000,4)]); # Robert Israel, Mar 13 2018
-
Mathematica
f[p_] := Module[{r}, r /. Solve[4 r^2 == -1, r, Modulus -> p] // Min]; f /@ Select[4 Range[300] + 1, PrimeQ] (* Jean-François Alcover, Jul 27 2020 *)
-
PARI
apply(p->lift(sqrt(Mod(-1,p)/4)), A002144)
Comments