A209883 Decimal expansion of constant C = maximum value that PrimePi(n)*log(n)/n reaches where PrimePi(n) is the number of primes less than or equal to n, A000720.
1, 2, 5, 5, 0, 5, 8, 7, 1, 2, 9, 3, 2, 4, 7, 9, 7, 9, 6, 9, 6, 8, 7, 0, 7, 4, 7, 6, 1, 8, 1, 2, 4, 4, 6, 9, 1, 6, 8, 9, 2, 0, 2, 7, 5, 8, 0, 6, 2, 7, 4, 1, 7, 1, 5, 4, 1, 7, 7, 9, 1, 5, 1, 3, 8, 0, 8, 0, 2, 8, 4, 7, 0, 5, 0, 2, 4, 0, 2, 6, 7, 3, 6, 7, 3, 3, 2, 4, 8, 0, 5, 9, 7, 3, 4, 1, 7, 3, 6, 5, 8, 3
Offset: 1
Examples
The maximum value for PrimePi(n)*log(n)/n occurs at n = 113.
Links
- J. Barkley Rosser, Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 1962 64-94.
- Eric Weisstein's World of Mathematics, Prime Counting Function.
Programs
-
Mathematica
$MaxPiecewiseCases=10000; sol=Maximize[{PrimePi[n]Log[n]/n, 1
Formula
C = 30*log(113)/113 = 1.255058712932479796968707476181244691689202758...
Comments