This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209931 #21 Jul 03 2025 02:37:24 %S A209931 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28, %T A209931 29,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,52,53,54, %U A209931 55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,72,73,74,75,76,77,78,79,81,82,83,84,85,86,87,88,89,91,92,93,94,95,96,97,98,99,111 %N A209931 Numbers k such that smallest digit of all divisors of k is 1. %C A209931 Also numbers k such that smallest digit of concatenation of all divisors of k (A037278 or A176558) is 1. %C A209931 Sequence is not the same as A052382, first deviation is at a(173): A052382(173) = 212, a(173) = 213. [Corrected by _Michael S. Branicky_, Jul 01 2025.] %C A209931 Sequence is not the same as A067251, first deviation is at a(91): A067251 (91) = 101, a(91) = 111. %C A209931 Complement of A209932. %H A209931 Michael S. Branicky, <a href="/A209931/b209931.txt">Table of n, a(n) for n = 1..10000</a> %e A209931 Number 24 is in sequence because smallest digit of all divisors of 24 (1, 2, 4, 8, 3, 6, 12, 24) is 1. %p A209931 isA209931 := proc(n) %p A209931 digsdiv := {} ; %p A209931 for d in numtheory[divisors](n) do %p A209931 dgs := convert(convert(d,base,10),set) ; %p A209931 digsdiv := digsdiv union dgs ; %p A209931 end do: %p A209931 if 0 in digsdiv then %p A209931 false; %p A209931 else %p A209931 true ; %p A209931 end if; %p A209931 end proc: %p A209931 A209931 := proc(n) %p A209931 option remember; %p A209931 if n =1 then %p A209931 1; %p A209931 else %p A209931 for a from procname(n-1)+1 do %p A209931 if isA209931(a) then %p A209931 return a; %p A209931 end if; %p A209931 end do; %p A209931 end if; %p A209931 end proc: %p A209931 seq(A209931(n),n=1..120) ;# _R. J. Mathar_, Dec 28 2023 %t A209931 Select[Range[100], Min[IntegerDigits[Divisors[#]]] == 1 &] (* _Paolo Xausa_, Jul 03 2025 *) %o A209931 (Python) %o A209931 from sympy import divisors %o A209931 def ok(n): return all('0' not in str(d) for d in divisors(n, generator=True)) %o A209931 print([k for k in range(1, 112) if ok(k)]) # _Michael S. Branicky_, Jul 01 2025 %Y A209931 Cf. A052382, A067251, A209929 (smallest digit of all divisors of n). %K A209931 nonn,base %O A209931 1,2 %A A209931 _Jaroslav Krizek_, Mar 20 2012