A209934 a(n) is the first value to occur consecutively in the sequence b_n defined by p_2k(b_n(k)) = p_k(n)^2, k=1,2,3,..., where p_k(n) is the n-th k-almost prime.
1, 3, 8, 12, 23, 26, 32, 66, 68, 78, 83, 106, 116, 169, 181, 201, 210, 216, 234, 273, 282, 296, 427, 436, 501, 504, 513, 538, 547, 583, 655, 688, 711, 738, 751, 851, 866, 947, 1065, 1088, 1155, 1274, 1277, 1285, 1350, 1369, 1389, 1456, 1594, 1615, 1702, 1734
Offset: 1
Keywords
Examples
for k = 1, 2, 3, 4, 5, 6, ...: p_k(3) = 5, 9, 18, 36, 72, 144, ... (the 3rd k-almost prime); p_k(3)^2 = 25, 81, 324, 1296, 5184, 20736, ...; b_3(k) = 9, 8, 8, 8, 8, 8, ... (index in the 2k-almost primes); so since b_3(3) = b_3(2) = 8, a(3) = 8.
Programs
-
PARI
get_p(m,k) = {local(i,n);i=0;n=1;while(i
A209934(n) = {local(m,k,k_old);m=3;k_old=get_k(2,get_p(1,n)^2);k=get_k(4,get_p(2,n)^2);while(k Michael B. Porter, Mar 20 2012
Formula
Extensions
Edited, correcting the subscripting, by Peter Munn, Aug 04 2019
Comments