A209936 Triangle of multiplicities of k-th partition of n corresponding to sequence A080577. Multiplicity of a given partition of n into k parts is the number of ways parts can be selected from k distinguishable bins. See the example.
1, 2, 1, 3, 6, 1, 4, 12, 6, 12, 1, 5, 20, 20, 30, 30, 20, 1, 6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1, 7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1, 8, 56, 56, 168, 56, 336, 280, 28, 336, 168, 840, 280, 168, 420, 840, 1120, 168, 70, 560, 420, 56, 1
Offset: 1
Examples
Triangle begins: 1 2, 1 3, 6, 1 4, 12, 6, 12, 1 5, 20, 20, 30, 30, 20, 1 6, 30, 30, 60, 15, 120, 60, 20, 90, 30, 1 7, 42, 42, 105, 42, 210, 140, 105, 105, 420, 105, 140, 210, 42, 1 ... Thus for n=3 (third row) the partitions of n=3 are: 3+0+0 0+3+0 0+0+3 (multiplicity=3), 2+1+0 2+0+1 1+2+0 1+0+2 0+2+1 0+1+2 (multiplicity=6), 1+1+1 (multiplicity=1).
Links
- Sergei Viznyuk, C Program
Programs
-
Mathematica
Apply[Multinomial,Last/@Tally[#]&/@PadRight[IntegerPartitions[n]],1] (* Wouter Meeussen, Jan 26 2025 *)
Comments