This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209978 #12 May 05 2020 17:08:32 %S A209978 0,0,1,4,7,14,17,28,35,46,53,72,79,102,113,128,143,174,185,220,235, %T A209978 258,277,320,335,374,397,432,455,510,525,584,615,654,685,732,755,826, %U A209978 861,908,939,1018,1041,1124,1163,1210,1253,1344,1375,1458,1497 %N A209978 a(n) = A196227(n)/2. %C A209978 See A210000 for a guide to related sequences. %p A209978 a:= proc(n) option remember; `if`(n<2, 0, %p A209978 a(n-1)-1 + 2*numtheory[phi](n)) %p A209978 end: %p A209978 seq(a(n), n=0..60); # _Alois P. Heinz_, May 05 2020 %t A209978 a = 1; b = n; z1 = 50; %t A209978 t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] %t A209978 c[n_, k_] := c[n, k] = Count[t[n], k] %t A209978 Table[c[n, 0], {n, 0, z1}] (* A134506 *) %t A209978 Table[c[n, 1], {n, 0, z1}] (* A196227 *) %t A209978 %/2 (* A209978 *) %t A209978 Table[2 c[n, 1], {n, 0, z1}](* A209979 *) %t A209978 Table[c[n, 2], {n, 0, z1}] (* A197168 *) %t A209978 %/2 (* A209980 *) %t A209978 Table[c[n, 3], {n, 0, z1}] (* A210001 *) %t A209978 Table[c[n, 4], {n, 0, z1}] (* A210002 *) %t A209978 Table[c[n, 5], {n, 0, z1}] (* A210027 *) %Y A209978 Cf. A196227, A210000. %K A209978 nonn %O A209978 0,4 %A A209978 _Clark Kimberling_, Mar 16 2012