This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A209981 #15 May 05 2020 01:59:38 %S A209981 1,33,129,289,545,833,1313,1729,2369,3041,3905,4577,5857,6657,7905, %T A209981 9345,10881,11937,13953,15137,17441,19521,21537,22977,26177,28257, %U A209981 30657,33249,36577,38401,42721,44673,48257,51617,54785,58529,63905 %N A209981 Number of singular 2 X 2 matrices having all elements in {-n,...,n}. %C A209981 See A210000 for a guide to related sequences. %H A209981 Chai Wah Wu, <a href="/A209981/b209981.txt">Table of n, a(n) for n = 0..10000</a> %F A209981 a(n) = 8*A134506(n) + (4*n + 1)^2. - _Andrew Howroyd_, May 04 2020 %e A209981 Among the 33 matrices counted by a(1) are these (in compact notation): %e A209981 (-1,-1,-1,-1), (0,0,0,0), (1,-1,-1,1), (1,1,1,1). %t A209981 a = -n; b = n; z1 = 40; %t A209981 t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] %t A209981 c[n_, k_] := c[n, k] = Count[t[n], k] %t A209981 Table[c[n, 0], {n, 0, z1}] (* A209981 *) %t A209981 Table[c[n, 1], {n, 0, z1}] (* A209982 *) %t A209981 %/4 (* A206258 *) %t A209981 2 % (* A209983 *) %t A209981 Table[c[n, 2], {n, 0, z1}] (* A209984 *) %t A209981 %/4 (* A209985 *) %t A209981 Table[c[n, 3], {n, 0, z1}] (* A209986 *) %t A209981 %/8 (* A209987 *) %t A209981 Table[c[n, 4], {n, 0, z1}] (* A209988 *) %t A209981 %/4 (* A209989 *) %t A209981 Table[c[n, 5], {n, 0, z1}] (* A209990 *) %t A209981 %/8 (* A209997 *) %Y A209981 Cf. A210000. %K A209981 nonn %O A209981 0,2 %A A209981 _Clark Kimberling_, Mar 17 2012