A209993 Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant in {-1,0,1}.
1, 16, 45, 94, 159, 248, 349, 478, 623, 792, 973, 1182, 1423, 1672, 1933, 2238, 2559, 2888, 3261, 3630, 4063, 4504, 4925, 5374, 5935, 6456, 6957, 7534, 8159, 8728, 9453, 10062, 10767, 11480, 12141, 12942, 13855, 14584, 15325, 16174, 17183
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
Maple
pillai:= proc(n) local i; add(igcd(i,n),i=1..n) end proc: T:= 16: R:= 1,16: for n from 2 to 50 do v:= 1 + 4*n + 8*numtheory:-phi(n) + 4*pillai(n); T:= T + v; R:= R,T; od: R; # Robert Israel, Jan 07 2024
-
Mathematica
a = 1; b = n; z1 = 40; t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]] c[n_, k_] := c[n, k] = Count[t[n], k] c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, 1}] Table[c1[n, 1], {n, 0, z1}] (* A209992 *)
Formula
For n > 1, a(n) - a(n-1) = 1 + 4 * n + 8 * A000010(n) + 4 * A018804(n). - Robert Israel, Jan 07 2024
Comments