A209996 Triangle of coefficients of polynomials u(n,x) jointly generated with A209998; see the Formula section.
1, 1, 3, 1, 5, 9, 1, 5, 21, 27, 1, 5, 25, 81, 81, 1, 5, 25, 117, 297, 243, 1, 5, 25, 125, 513, 1053, 729, 1, 5, 25, 125, 609, 2133, 3645, 2187, 1, 5, 25, 125, 625, 2853, 8505, 12393, 6561, 1, 5, 25, 125, 625, 3093, 12825, 32805, 41553, 19683, 1, 5, 25, 125
Offset: 1
Examples
First five rows: 1 1...3 1...5...9 1...5...21...27 1...5...25...81...81 First three polynomials u(n,x): 1, 1 + 3x, 1 + 5x + 9x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209996 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A209998 *)
Formula
u(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments