This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210034 #13 Aug 07 2025 04:37:57 %S A210034 1,2,1,4,2,1,7,5,2,1,12,10,6,2,1,20,20,13,7,2,1,33,38,29,16,8,2,1,54, %T A210034 71,60,39,19,9,2,1,88,130,122,86,50,22,10,2,1,143,235,241,187,116,62, %U A210034 25,11,2,1,232,420,468,392,267,150,75,28,12,2,1,376,744,894,806 %N A210034 Triangle of coefficients of polynomials v(n,x) jointly generated with A210033; see the Formula section. %C A210034 For a discussion and guide to related arrays, see A208510. %C A210034 From _Gus Wiseman_, Jun 29 2025: (Start) %C A210034 This appears to be the number of subsets of {1..n} with k>0 maximal anti-runs (sequences of consecutive elements increasing by more than 1). For example, the subset {1,2,4,5} has maximal anti-runs ((1),(2,4),(5)) so is counted under T(5,3). Row n = 5 counts the following: %C A210034 {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} %C A210034 {2} {2,3} {2,3,4} {2,3,4,5} %C A210034 {3} {3,4} {3,4,5} %C A210034 {4} {4,5} {1,2,3,5} %C A210034 {5} {1,2,4} {1,2,4,5} %C A210034 {1,3} {1,2,5} {1,3,4,5} %C A210034 {1,4} {1,3,4} %C A210034 {1,5} {1,4,5} %C A210034 {2,4} {2,3,5} %C A210034 {2,5} {2,4,5} %C A210034 {3,5} %C A210034 {1,3,5} %C A210034 For runs instead of anti-runs we have A034839, with n A202064. For reversed partitions instead of subsets we have A268193. (End) %F A210034 u(n,x)=u(n-1,x)+v(n-1,x)+1, %F A210034 v(n,x)=u(n-1,x)+x*v(n-1,x)+1, %F A210034 where u(1,x)=1, v(1,x)=1. %e A210034 First five rows: %e A210034 1 %e A210034 2 1 %e A210034 4 2 1 %e A210034 7 5 2 1 %e A210034 12 10 6 2 1 %e A210034 First three polynomials v(n,x): 1, 2 + x, 4 + 2*x + x^2. %t A210034 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210034 u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; %t A210034 v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1; %t A210034 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210034 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210034 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210034 TableForm[cu] %t A210034 Flatten[%] (* A210033 *) %t A210034 Table[Expand[v[n, x]], {n, 1, z}] %t A210034 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210034 TableForm[cv] %t A210034 Flatten[%] (* A210034 *) %Y A210034 Cf. A210033, A208510. %Y A210034 Column k = 1 is A000071. %Y A210034 Row sums are A000225. %Y A210034 Column k = 2 is A001629. %Y A210034 Column k = 3 is A055243. %Y A210034 The version including k = 0 is A384893. %Y A210034 A034839 counts subsets by number of maximal runs, see also A202023, A202064. %Y A210034 A384175 counts subsets with all distinct lengths of maximal runs, complement A384176. %Y A210034 A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878. %Y A210034 Cf. A053538, A116674, A119900, A268193, A384177, A384879, A384889, A384905. %K A210034 nonn,tabl %O A210034 1,2 %A A210034 _Clark Kimberling_, Mar 16 2012