This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210035 #4 Mar 30 2012 18:58:16 %S A210035 1,3,6,2,11,6,4,19,16,12,8,32,36,36,24,16,53,76,88,80,48,32,87,152, %T A210035 204,208,176,96,64,142,294,444,520,480,384,192,128,231,554,932,1208, %U A210035 1280,1088,832,384,256,375,1024,1896,2704,3136,3072,2432,1792,768 %N A210035 Triangle of coefficients of polynomials u(n,x) jointly generated with A210036; see the Formula section. %C A210035 For a discussion and guide to related arrays, see A208510. %F A210035 u(n,x)=u(n-1,x)+v(n-1,x)+1, %F A210035 v(n,x)=u(n-1,x)+2x*v(n-1,x)+1, %F A210035 where u(1,x)=1, v(1,x)=1. %e A210035 First five rows: %e A210035 1 %e A210035 3 %e A210035 6....2 %e A210035 11...6....4 %e A210035 19...16...12...8 %e A210035 First three polynomials u(n,x): 1, 3, 6 + 2x. %t A210035 u[1, x_] := 1; v[1, x_] := 1; z = 16; %t A210035 u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; %t A210035 v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; %t A210035 Table[Expand[u[n, x]], {n, 1, z/2}] %t A210035 Table[Expand[v[n, x]], {n, 1, z/2}] %t A210035 cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; %t A210035 TableForm[cu] %t A210035 Flatten[%] (* A210035 *) %t A210035 Table[Expand[v[n, x]], {n, 1, z}] %t A210035 cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; %t A210035 TableForm[cv] %t A210035 Flatten[%] (* A210036 *) %Y A210035 Cf. A210036, A208510. %K A210035 nonn,tabl %O A210035 1,2 %A A210035 _Clark Kimberling_, Mar 16 2012