A210036 Triangle of coefficients of polynomials v(n,x) jointly generated with A210035; see the Formula section.
1, 2, 2, 4, 4, 4, 7, 10, 8, 8, 12, 20, 24, 16, 16, 20, 40, 52, 56, 32, 32, 33, 76, 116, 128, 128, 64, 64, 54, 142, 240, 312, 304, 288, 128, 128, 88, 260, 488, 688, 800, 704, 640, 256, 256, 143, 470, 964, 1496, 1856, 1984, 1600, 1408, 512, 512, 232, 840
Offset: 1
Examples
First five rows: 1 2....2 4....4....4 7....10...8....8 12...20...24...16...16 First three polynomials v(n,x): 1, 2 + 2x , 4 + 4x + 4x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210035 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210036 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments