A210037 Triangle of coefficients of polynomials u(n,x) jointly generated with A210038; see the Formula section.
1, 3, 7, 1, 15, 5, 1, 31, 17, 6, 1, 63, 49, 24, 7, 1, 127, 129, 80, 32, 8, 1, 255, 321, 240, 120, 41, 9, 1, 511, 769, 672, 400, 170, 51, 10, 1, 1023, 1793, 1792, 1232, 620, 231, 62, 11, 1, 2047, 4097, 4608, 3584, 2072, 912, 304, 74, 12, 1, 4095, 9217
Offset: 1
Examples
First five rows: 1 3 7....1 15...5....1 31...17...6...1 First three polynomials u(n,x): 1, 3, 7 + x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210037 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210038 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments