A210038 Triangle of coefficients of polynomials v(n,x) jointly generated with A210037; see the Formula section.
1, 3, 1, 7, 4, 1, 15, 12, 5, 1, 31, 32, 18, 6, 1, 63, 80, 56, 25, 7, 1, 127, 192, 160, 88, 33, 8, 1, 255, 448, 432, 280, 129, 42, 9, 1, 511, 1024, 1120, 832, 450, 180, 52, 10, 1, 1023, 2304, 2816, 2352, 1452, 681, 242, 63, 11, 1, 2047, 5120, 6912, 6400
Offset: 1
Examples
First five rows: 1 3....1 7....4....1 15...12...5....1 31...32...18...6...1 First three polynomials v(n,x): 1, 3 + x , 7 + 4x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210037 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210038 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments