cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210039 Array of coefficients of polynomials u(n,x) jointly generated with A210040; see the Formula section.

Original entry on oeis.org

1, 3, 6, 1, 10, 5, 15, 15, 1, 21, 35, 7, 28, 70, 28, 1, 36, 126, 84, 9, 45, 210, 210, 45, 1, 55, 330, 462, 165, 11, 66, 495, 924, 495, 66, 1, 78, 715, 1716, 1287, 286, 13, 91, 1001, 3003, 3003, 1001, 91, 1, 105, 1365, 5005, 6435, 3003, 455, 15, 120, 1820
Offset: 1

Views

Author

Clark Kimberling, Mar 17 2012

Keywords

Comments

Every term is a binomial coefficient.
Row sums: A000225
For a discussion and guide to related arrays, see A208510.

Examples

			First eight rows:
1
3
6....1
10...5
15...15....1
21...35....7
28...70....28...1
36...126...84...9
First five polynomials u(n,x):
1
3
6 + x
10 + 5x
21 + 35x + 7x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210039 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210040 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, writing the general term as T(n,m),
T(n,k)=C(n,2k) for 1<=k<=floor[(n+1)/2], for n>=1.