A210042 Triangle of coefficients of polynomials u(n,x) jointly generated with A124927; see the Formula section.
1, 3, 5, 2, 7, 6, 2, 9, 12, 8, 2, 11, 20, 20, 10, 2, 13, 30, 40, 30, 12, 2, 15, 42, 70, 70, 42, 14, 2, 17, 56, 112, 140, 112, 56, 16, 2, 19, 72, 168, 252, 252, 168, 72, 18, 2, 21, 90, 240, 420, 504, 420, 240, 90, 20, 2, 23, 110, 330, 660, 924, 924, 660, 330, 110
Offset: 1
Examples
From _Philippe Deléham_, Mar 25 2012: (Start) (1, 2, -2, 1, 0, 0, ...) DELTA (0, 0, 1, 0, 0, ...) begins: 1; 1, 0; 3, 0, 0; 5, 2, 0, 0; 7, 6, 2, 0, 0; 9, 12, 8, 2, 0, 0; 11, 20, 20, 10, 2, 0, 0; 13, 30, 40, 30, 12, 2, 0, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210042 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A124927 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A010701 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 signed *)
Formula
First five rows:
1;
3,
5, 2;
7, 6, 2;
9, 12, 8, 2;
First three polynomials u(n,x): 1, 3, 5 + 2x.
Also, counting the top row as row 0, row n for n > 0 is as follows: 2n+1, 2C(n,2), 2C(n,3), ..., 2C(n,n).
From Philippe Deléham, Mar 25 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x-y*x+2*x^2)/(1-2*x-y*x+x^2+y*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = 1, T(2,0) = 3, T(1,1) = T(2,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: (1+x-x*y)*x*y/((-1+x)*(x+x*y-1)). - R. J. Mathar, Aug 12 2015
Comments