cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210042 Triangle of coefficients of polynomials u(n,x) jointly generated with A124927; see the Formula section.

Original entry on oeis.org

1, 3, 5, 2, 7, 6, 2, 9, 12, 8, 2, 11, 20, 20, 10, 2, 13, 30, 40, 30, 12, 2, 15, 42, 70, 70, 42, 14, 2, 17, 56, 112, 140, 112, 56, 16, 2, 19, 72, 168, 252, 252, 168, 72, 18, 2, 21, 90, 240, 420, 504, 420, 240, 90, 20, 2, 23, 110, 330, 660, 924, 924, 660, 330, 110
Offset: 1

Views

Author

Clark Kimberling, Mar 17 2012

Keywords

Comments

Row sums: A000225
For a discussion and guide to related arrays, see A208510.
u(n,x) = u(n-1,x) + v(n-1,x) + 1,
v(n,x) = x*u(n-1,x) + x*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
Subtriangle of the triangle given by (1, 2, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012

Examples

			From _Philippe Deléham_, Mar 25 2012: (Start)
(1, 2, -2, 1, 0, 0, ...) DELTA (0, 0, 1, 0, 0, ...) begins:
   1;
   1,  0;
   3,  0,  0;
   5,  2,  0,  0;
   7,  6,  2,  0,  0;
   9, 12,  8,  2,  0,  0;
  11, 20, 20, 10,  2,  0,  0;
  13, 30, 40, 30, 12,  2,  0,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210042 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A124927 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A000225 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A010701 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A000012 signed *)

Formula

First five rows:
1;
3,
5, 2;
7, 6, 2;
9, 12, 8, 2;
First three polynomials u(n,x): 1, 3, 5 + 2x.
Also, counting the top row as row 0, row n for n > 0 is as follows: 2n+1, 2C(n,2), 2C(n,3), ..., 2C(n,n).
From Philippe Deléham, Mar 25 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x-y*x+2*x^2)/(1-2*x-y*x+x^2+y*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = 1, T(2,0) = 3, T(1,1) = T(2,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: (1+x-x*y)*x*y/((-1+x)*(x+x*y-1)). - R. J. Mathar, Aug 12 2015