cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210043 G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).

This page as a plain text file.
%I A210043 #19 Sep 28 2023 08:40:16
%S A210043 1,1,2,4,10,26,73,211,629,1912,5913,18531,58739,187963,606416,1970326,
%T A210043 6441623,21175056,69946082,232054411,772886274,2583325555,8662455004,
%U A210043 29132638803,98240253058,332105822674,1125273780474,3820859749502,12999287203624
%N A210043 G.f. A(x) satisfies: A(x) = 1 / Product_{n>=1} (1 - x^n*A(x)^(n-1)).
%H A210043 Vaclav Kotesovec, <a href="/A210043/b210043.txt">Table of n, a(n) for n = 0..325</a> (terms 0..200 from Paul D. Hanna)
%F A210043 G.f. A(x) satisfies:
%F A210043 (1) A(x) = 1 + Sum_{n>=1} x^n / Product_{k=1..n} (1 - x^k*A(x)^k).
%F A210043 (2) A(x) = 1 + Sum_{n>=1} x^n*A(x)^(n-1) / Product_{k=1..n} (1 - x^k*A(x)^(k-1)).
%F A210043 (3) A(x) = 1 + Sum_{n>=1} x^(n^2)*A(x)^(n^2-n) / [Product_{k=1..n} (1 - x^k*A(x)^(k-1))*(1 - x^k*A(x)^k)].
%F A210043 (4) A(x) = exp( Sum_{n>=1} x^n/n / (1 - x^n*A(x)^n) ).
%F A210043 a(n) ~ c * d^n / n^(3/2), where d = 3.58867546756663411130633387... and c = 0.57644814981246742030509... - _Vaclav Kotesovec_, Aug 12 2021
%e A210043 G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 26*x^5 + 73*x^6 + 211*x^7 +...
%e A210043 The g.f. satisfies the q-series identities:
%e A210043 (0) A(x) = 1/( (1-x) * (1-x^2*A(x)) * (1-x^3*A(x)^2) * (1-x^4*A(x)^3) *...).
%e A210043 (1) A(x) = 1 + x/(1-x*A(x)) + x^2/((1-x*A(x))*(1-x^2*A(x)^2)) + x^3/((1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
%e A210043 (2) A(x) = 1 + x/(1-x) + x^2*A(x)/((1-x)*(1-x^2*A(x))) + x^3*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)) +...
%e A210043 (3) A(x) = 1 + x/((1-x)*(1-x*A(x))) + x^4*A(x)^2/((1-x)*(1-x^2*A(x))*(1-x*A(x))*(1-x^2*A(x)^2)) + x^9*A(x)^6/((1-x)*(1-x^2*A(x))*(1-x^3*A(x)^2)*(1-x*A(x))*(1-x^2*A(x)^2)*(1-x^3*A(x)^3)) +...
%e A210043 (4) A(x) = exp( x/(1-x*A(x)) + x^2/(2*(1-x^2*A(x)^2)) + x^3/(3*(1-x^3*A(x)^3)) +...).
%t A210043 nmax = 30; A[_] = 0; Do[A[x_] = 1/(1 - x)/Product[1 - x^k*A[x]^(k - 1), {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* _Vaclav Kotesovec_, Sep 28 2023 *)
%t A210043 (* Calculation of constants {d,c}: *) {1/r, -s*Log[r*s]* Sqrt[(-1 + r*s)*(((-2 + s)*Log[r*s] + (-1 + s)*Log[1 - r*s] + (-1 + s)*QPolyGamma[0, Log[1/s]/Log[r*s], r*s])/ (2* Pi*(Log[r*s]*(4*r*(-1 + s)*s*ArcTanh[1 - 2*r*s] + 2*(-3 + s)*(-1 + r*s)*Log[r*s]^2 + (2 - 2*s + (-5 + 3*s)*(-1 + r*s)*Log[r*s])* Log[1 - r*s] + (-1 + s)*(-1 + r*s)*Log[1 - r*s]^2) + (-1 + r*s)* Log[r*s]*((-5 + 3*s)*Log[r*s] + 2*(-1 + s)*(1 + Log[1 - r*s]))* QPolyGamma[0, Log[1/s]/Log[r*s], r*s] + (-1 + s)*(-1 + r*s)*Log[r*s]* QPolyGamma[0, Log[1/s]/Log[r*s], r*s]^2 + (-1 + r*s)*((-1 + s)*(2*Log[1/s] + Log[r*s])* QPolyGamma[1, Log[1/s]/Log[r*s], r*s] + r*s*Log[r*s]^2*((-r)*s^3*Log[r*s]* Derivative[0, 2][QPochhammer][1/s, r*s] - 2*(-1 + s)* Derivative[0, 0, 1][QPolyGamma][0, Log[1/s]/Log[r*s], r*s])))))]} /. FindRoot[{s - 1 == s^2*QPochhammer[1/s, r*s], (s - 2)/s + ((s - 1)*(Log[1 - r*s] + QPolyGamma[0, Log[1/s]/Log[r*s], r*s]))/(s*Log[r*s]) + r*s^2*Derivative[0, 1][QPochhammer][1/s, r*s] == 0}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Sep 28 2023 *)
%o A210043 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1/prod(k=1, n, (1-x^k*A^(k-1)+x*O(x^n)))); polcoeff(A, n)}
%o A210043 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^(m-1)/prod(k=1, m, (1-x^k*A^(k-1)+x*O(x^n))))); polcoeff(A, n)}
%o A210043 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m/prod(k=1, m, (1-x^k*A^k +x*O(x^n))))); polcoeff(A, n)}
%o A210043 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, sqrtint(n+1), x^(m^2)*A^(m^2-m)/prod(k=1, m, (1-x^k*A^(k-1))*(1-x^k*A^k+x*O(x^n))))); polcoeff(A, n)}
%o A210043 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m/m/(1-x^m*A^m +x*O(x^n))))); polcoeff(A, n)}
%o A210043 for(n=0,35,print1(a(n),", "))
%Y A210043 Cf. A145268, A145267, A196150, A109085.
%K A210043 nonn
%O A210043 0,3
%A A210043 _Paul D. Hanna_, Mar 16 2012