cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210064 Total number of 231 patterns in the set of permutations avoiding 123.

This page as a plain text file.
%I A210064 #26 May 31 2017 23:01:15
%S A210064 0,0,1,11,81,500,2794,14649,73489,356960,1691790,7864950,36000186,
%T A210064 162697176,727505972,3223913365,14176874193,61926666824,268931341414,
%U A210064 1161913686618,4997204887550,21404922261112,91351116184716,388581750349946,1647982988377786
%N A210064 Total number of 231 patterns in the set of permutations avoiding 123.
%C A210064 a(n) is the total number of 231 (and also 312) patterns in the set of all 123 avoiding n-permutations. Also the number of 231 (or 213, or 312) patterns in the set of all 132 avoiding n-permutations.
%H A210064 G. C. Greubel, <a href="/A210064/b210064.txt">Table of n, a(n) for n = 1..1000</a>
%H A210064 Cheyne Homberger, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v19i3p43">Expected patterns in permutation classes</a>, Electronic Journal of Combinatorics, 19(3) (2012), P43.
%F A210064 G.f.: x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x).
%F A210064 a(n) ~ n * 2^(2*n-3) * (1 - 6/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 15 2014
%F A210064 Conjecture: n*(n-3)*a(n) +2*(-4*n^2+11*n-2)*a(n-1) +8*(n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Oct 08 2016
%e A210064 a(3) = 1 since there is only one 231 pattern in the set {132,213,231,312,321}.
%t A210064 Rest[CoefficientList[Series[x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x), {x, 0, 20}], x]] (* _Vaclav Kotesovec_, Mar 15 2014 *)
%o A210064 (PARI) x='x+O('x^50); concat([0,0], Vec(x/(2*(1-4*x)^2) + (x-1)/(2*(1-4*x)^(3/2)) + 1/(2 - 8*x))) \\ _G. C. Greubel_, May 31 2017
%Y A210064 Cf. A045720.
%K A210064 nonn
%O A210064 1,4
%A A210064 _Cheyne Homberger_, Mar 16 2012