A210144 a(n) = least integer m>1 such that the product of the first k primes for k=1,...,n are pairwise distinct modulo m.
2, 3, 5, 11, 11, 23, 29, 37, 37, 41, 47, 47, 47, 47, 47, 73, 131, 131, 131, 131, 131, 151, 151, 151, 151, 199, 223, 223, 271, 271, 271, 281, 281, 281, 281, 281, 281, 281, 281, 281, 353, 353, 457, 457, 457, 457, 457, 457, 457, 457, 457, 641, 641, 641, 641, 641, 643, 643, 643, 643
Offset: 1
Keywords
Examples
a(3)=5 because 2, 2*3=6, 2*3*5=30 are distinct modulo m=5 but not distinct modulo m=2,3,4.
Links
- Jason Yuen, Table of n, a(n) for n = 1..10000 (first 1172 terms from Zhi-Wei Sun)
- R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2023. - From _N. J. A. Sloane_, Jun 13 2012
- Zhi-Wei Sun, A function taking only prime values, a message to Number Theory List, Feb. 21, 2012.
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
Programs
-
Mathematica
R[n_,m_]:=Union[Table[Mod[Product[Prime[j],{j,1,k}],m],{k,1,n}]] Do[Do[If[Length[R[n,m]]==n,Print[n," ",m];Goto[aa]],{m,2,Max[2,n^2]}]; Print[n];Label[aa];Continue,{n,1,1000}]
Comments