cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210184 Number of distinct residues of all factorials mod prime(n).

This page as a plain text file.
%I A210184 #30 Sep 14 2019 06:36:12
%S A210184 2,3,4,5,6,10,12,12,17,19,21,26,29,26,31,35,37,41,42,39,44,49,55,59,
%T A210184 59,65,71,75,63,73,80,82,90,90,104,86,103,104,107,111,113,114,120,125,
%U A210184 120,115,139,149,132,141,147,150,147,164,166,172,172,170,172,180
%N A210184 Number of distinct residues of all factorials mod prime(n).
%C A210184 Conjecture: a(n)/p_n > 1/2.
%C A210184 The standard (folklore?) conjecture is that a(n)/prime(n) = 1 - 1/e = 0.63212.... - _Charles R Greathouse IV_, May 11 2015
%H A210184 Amiram Eldar, <a href="/A210184/b210184.txt">Table of n, a(n) for n = 1..10000</a> (terms 1...1000 from Alois P. Heinz)
%H A210184 Yong-Gao Chen and Li-Xia Dai, <a href="http://emis.impa.br/EMIS/journals/INTEGERS/papers/g21/g21.Abstract.html">Congruences with factorials modulo p</a>, INTEGERS 6 (2006), #A21.
%e A210184 Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4) = 5.
%p A210184 a:= proc(n) local p, m, i, s;
%p A210184       p:= ithprime(n);
%p A210184       m:= 1;
%p A210184       s:= {};
%p A210184       for i to p do m:= m*i mod p; s:=s union {m} od;
%p A210184       nops(s)
%p A210184     end:
%p A210184 seq(a(n), n=1..100);  # _Alois P. Heinz_, Mar 19 2012
%t A210184 Table[Length[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* _T. D. Noe_, Mar 18 2012 *)
%o A210184 (PARI) apply(p->#Set(vector(p,n,n!)%p), primes(100)) \\ _Charles R Greathouse IV_, May 11 2015
%o A210184 (PARI) a(n,p=prime(n))=my(t=1); #Set(vector(p,n,t=(t*n)%p)) \\ _Charles R Greathouse IV_, May 11 2015
%Y A210184 Cf. A000040, A000142.
%K A210184 nonn
%O A210184 1,1
%A A210184 _Vladimir Shevelev_, Mar 18 2012