This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210184 #30 Sep 14 2019 06:36:12 %S A210184 2,3,4,5,6,10,12,12,17,19,21,26,29,26,31,35,37,41,42,39,44,49,55,59, %T A210184 59,65,71,75,63,73,80,82,90,90,104,86,103,104,107,111,113,114,120,125, %U A210184 120,115,139,149,132,141,147,150,147,164,166,172,172,170,172,180 %N A210184 Number of distinct residues of all factorials mod prime(n). %C A210184 Conjecture: a(n)/p_n > 1/2. %C A210184 The standard (folklore?) conjecture is that a(n)/prime(n) = 1 - 1/e = 0.63212.... - _Charles R Greathouse IV_, May 11 2015 %H A210184 Amiram Eldar, <a href="/A210184/b210184.txt">Table of n, a(n) for n = 1..10000</a> (terms 1...1000 from Alois P. Heinz) %H A210184 Yong-Gao Chen and Li-Xia Dai, <a href="http://emis.impa.br/EMIS/journals/INTEGERS/papers/g21/g21.Abstract.html">Congruences with factorials modulo p</a>, INTEGERS 6 (2006), #A21. %e A210184 Let n=4, p_4=7. We have modulo 7: 1!==1, 2!==2, 3!==6, 4!==3, 5!==1, 6!==6 and for m>=7, m!==0, such that we have 5 distinct residues 0,1,2,3,6. Therefore a(4) = 5. %p A210184 a:= proc(n) local p, m, i, s; %p A210184 p:= ithprime(n); %p A210184 m:= 1; %p A210184 s:= {}; %p A210184 for i to p do m:= m*i mod p; s:=s union {m} od; %p A210184 nops(s) %p A210184 end: %p A210184 seq(a(n), n=1..100); # _Alois P. Heinz_, Mar 19 2012 %t A210184 Table[Length[Union[Mod[Range[Prime[n]]!, Prime[n]]]], {n, 100}] (* _T. D. Noe_, Mar 18 2012 *) %o A210184 (PARI) apply(p->#Set(vector(p,n,n!)%p), primes(100)) \\ _Charles R Greathouse IV_, May 11 2015 %o A210184 (PARI) a(n,p=prime(n))=my(t=1); #Set(vector(p,n,t=(t*n)%p)) \\ _Charles R Greathouse IV_, May 11 2015 %Y A210184 Cf. A000040, A000142. %K A210184 nonn %O A210184 1,1 %A A210184 _Vladimir Shevelev_, Mar 18 2012