A210187 Triangle of coefficients of polynomials u(n,x) jointly generated with A210188; see the Formula section.
1, 3, 6, 2, 10, 9, 2, 15, 25, 13, 2, 21, 55, 49, 17, 2, 28, 105, 140, 81, 21, 2, 36, 182, 336, 285, 121, 25, 2, 45, 294, 714, 825, 506, 169, 29, 2, 55, 450, 1386, 2079, 1716, 819, 225, 33, 2, 66, 660, 2508, 4719, 5005, 3185, 1240, 289, 37, 2, 78, 935, 4290
Offset: 1
Examples
First five rows: 1 3 6....2 10...9....2 15...25...13...2 First three polynomials u(n,x): 1, 3, 6 + 2x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210187 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210188 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments