A210190 Triangle of coefficients of polynomials v(n,x) jointly generated with A210189; see the Formula section.
1, 2, 2, 3, 8, 4, 20, 4, 5, 40, 24, 6, 70, 84, 8, 7, 112, 224, 64, 8, 168, 504, 288, 16, 9, 240, 1008, 960, 160, 10, 330, 1848, 2640, 880, 32, 11, 440, 3168, 6336, 3520, 384, 12, 572, 5148, 13728, 11440, 2496, 64, 13, 728, 8008, 27456, 32032, 11648
Offset: 1
Examples
First five rows: 1 2...2 3...8 4...20...4 5...40...24 First three polynomials v(n,x): 1, 2 + 2x , 3 + 8x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210189 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210190 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=2x*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments