A210191 Triangle of coefficients of polynomials u(n,x) jointly generated with A210192; see the Formula section.
1, 3, 5, 3, 7, 10, 3, 9, 21, 16, 3, 11, 36, 47, 22, 3, 13, 55, 104, 85, 28, 3, 15, 78, 195, 236, 135, 34, 3, 17, 105, 328, 535, 456, 197, 40, 3, 19, 136, 511, 1058, 1227, 788, 271, 46, 3, 21, 171, 752, 1897, 2820, 2471, 1256, 357, 52, 3, 23, 210, 1059, 3160
Offset: 1
Examples
First five rows: 1 3 5...3 7...10...3 9...21...16...3 First three polynomials u(n,x): 1, 3, 5 + 3x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210191 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210192 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=2x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments