A210196 Triangle of coefficients of polynomials v(n,x) jointly generated with A210195; see the Formula section.
1, 1, 4, 1, 8, 8, 1, 12, 24, 16, 1, 16, 48, 64, 32, 1, 20, 80, 160, 160, 64, 1, 24, 120, 320, 480, 384, 128, 1, 28, 168, 560, 1120, 1344, 896, 256, 1, 32, 224, 896, 2240, 3584, 3584, 2048, 512, 1, 36, 288, 1344, 4032, 8064, 10752, 9216, 4608, 1024, 1, 40
Offset: 1
Examples
First five rows: 1; 1, 4; 1, 8, 8; 1, 12, 24, 16; 1, 16, 48, 64, 32; First three polynomials v(n,x): 1, 1 + 4x, 1 + 8x + 8x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210195 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210196 *)
Formula
u(n,x) = u(n-1,x) + v(n-1,x) + 1, v(n,x) = 2*x*u(n-1,x) + 2*x*v(n-1,x) + 1, where u(1,x)=1, v(1,x)=1.
Conjecture: T(n,0) = 1 and T(n,k) = 2^(k+1)*binomial(n-1,k) if k>0. - Knud Werner, Jan 10 2022
Comments