A210199 Triangle of coefficients of polynomials u(n,x) jointly generated with A210200; see the Formula section.
1, 3, 6, 2, 11, 7, 2, 19, 19, 9, 2, 32, 44, 30, 11, 2, 53, 94, 83, 43, 13, 2, 87, 190, 207, 137, 58, 15, 2, 142, 370, 480, 387, 208, 75, 17, 2, 231, 701, 1057, 1004, 653, 298, 94, 19, 2, 375, 1301, 2238, 2448, 1865, 1026, 409, 115, 21, 2, 608, 2376, 4596
Offset: 1
Examples
First five rows: 1 3 6....2 11...7....2 19...19...9...2 First three polynomials u(n,x): 1, 3, 6 + 2x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210199 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210200 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments