A210201 Triangle of coefficients of polynomials u(n,x) jointly generated with A210202; see the Formula section.
1, 3, 6, 3, 11, 10, 6, 19, 27, 23, 12, 32, 62, 73, 52, 24, 53, 132, 193, 187, 116, 48, 87, 266, 468, 552, 462, 256, 96, 142, 517, 1061, 1482, 1495, 1112, 560, 192, 231, 978, 2297, 3688, 4369, 3896, 2624, 1216, 384, 375, 1813, 4797, 8703, 11758
Offset: 1
Examples
First five rows: 1 3 6....3 11...10...6 19...27...23...12 First three polynomials u(n,x): 1, 3, 6 + 3x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210201 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210202 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments