A210202 Triangle of coefficients of polynomials v(n,x) jointly generated with A210201; see the Formula section.
1, 2, 3, 4, 7, 6, 7, 17, 17, 12, 12, 35, 50, 40, 24, 20, 70, 120, 135, 92, 48, 33, 134, 275, 365, 346, 208, 96, 54, 251, 593, 930, 1033, 856, 464, 192, 88, 461, 1236, 2206, 2874, 2784, 2064, 1024, 384, 143, 835, 2500, 5015, 7389, 8355, 7240, 4880
Offset: 1
Examples
First five rows: 1 2....3 4....7....6 7....17...17...12 12...35...50...40...24 First three polynomials v(n,x): 1, 2 + 3x , 4 + 7x + 6x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210201 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210202 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments