A210203 Triangle of coefficients of polynomials u(n,x) jointly generated with A210204; see the Formula section.
1, 3, 7, 2, 15, 10, 2, 31, 34, 14, 2, 63, 98, 62, 18, 2, 127, 258, 222, 98, 22, 2, 255, 642, 702, 418, 142, 26, 2, 511, 1538, 2046, 1538, 702, 194, 30, 2, 1023, 3586, 5630, 5122, 2942, 1090, 254, 34, 2, 2047, 8194, 14846, 15874, 11006, 5122, 1598, 322
Offset: 1
Examples
First five rows: 1 3 7....2 15...10...2 31...34...14...2 First three polynomials u(n,x): 1, 3, 7 + 2x.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x+1)*u[n-1,x]+(x+1)*v[n-1,x]+1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210203 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210204 *)
Formula
u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments