A210213 Triangle of coefficients of polynomials u(n,x) jointly generated with A210214; see the Formula section.
1, 2, 1, 4, 3, 1, 7, 9, 4, 1, 12, 21, 16, 5, 1, 20, 46, 46, 25, 6, 1, 33, 94, 121, 85, 36, 7, 1, 54, 185, 289, 260, 141, 49, 8, 1, 88, 353, 653, 708, 491, 217, 64, 9, 1, 143, 659, 1409, 1800, 1499, 847, 316, 81, 10, 1, 232, 1209, 2939, 4320, 4229, 2863, 1366
Offset: 1
Examples
First five rows: 1 2....1 4....3....1 7....9....4....1 12...21...16...5...1 First three polynomials u(n,x): 1, 2 + x, 4 + 3x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210213 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210214 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments