A210216 Triangle of coefficients of polynomials v(n,x) jointly generated with A210215; see the Formula section.
1, 1, 2, 1, 3, 3, 1, 3, 7, 4, 1, 3, 8, 14, 5, 1, 3, 8, 20, 25, 6, 1, 3, 8, 21, 46, 41, 7, 1, 3, 8, 21, 54, 97, 63, 8, 1, 3, 8, 21, 55, 133, 189, 92, 9, 1, 3, 8, 21, 55, 143, 309, 344, 129, 10, 1, 3, 8, 21, 55, 144, 364, 674, 591, 175, 11, 1, 3, 8, 21, 55, 144, 376, 894
Offset: 1
Examples
First five rows: 1 1...2 1...3...3 1...3...7...4 1...3...8...14...5 First three polynomials v(n,x): 1, 1 + 2x , 1 + 3x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210215 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210216 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A137470 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=xu(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments