A210217 Triangle of coefficients of polynomials u(n,x) jointly generated with A210218; see the Formula section.
1, 2, 1, 2, 5, 1, 2, 6, 12, 1, 2, 6, 19, 27, 1, 2, 6, 20, 57, 58, 1, 2, 6, 20, 67, 160, 121, 1, 2, 6, 20, 68, 218, 424, 248, 1, 2, 6, 20, 68, 231, 680, 1073, 503, 1, 2, 6, 20, 68, 232, 775, 2028, 2619, 1014, 1, 2, 6, 20, 68, 232, 791, 2543, 5797, 6214, 2037, 1, 2
Offset: 1
Examples
First five rows: 1 2...1 2...5...1 2...6...12...1 2...6...19...27...1 First three polynomials u(n,x): 1, 2 + x, 2 + 5x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210217 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210218 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments