A210218 Triangle of coefficients of polynomials v(n,x) jointly generated with A210217; see the Formula section.
1, 1, 3, 1, 4, 7, 1, 4, 13, 15, 1, 4, 14, 38, 31, 1, 4, 14, 47, 103, 63, 1, 4, 14, 48, 151, 264, 127, 1, 4, 14, 48, 163, 462, 649, 255, 1, 4, 14, 48, 164, 544, 1348, 1546, 511, 1, 4, 14, 48, 164, 559, 1768, 3769, 3595, 1023, 1, 4, 14, 48, 164, 560, 1893, 5564
Offset: 1
Examples
First five rows: 1 1...3 1...4...7 1...4...13...15 1...4...14...38...31 First three polynomials v(n,x): 1, 1 + 3x , 1 + 4x + 7x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210217 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210218 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments