A210231 Triangle of coefficients of polynomials u(n,x) jointly generated with A210232; see the Formula section.
1, 2, 1, 3, 4, 1, 4, 8, 7, 1, 5, 14, 18, 11, 1, 6, 21, 39, 36, 16, 1, 7, 30, 69, 93, 66, 22, 1, 8, 40, 114, 192, 199, 113, 29, 1, 9, 52, 172, 360, 474, 393, 183, 37, 1, 10, 65, 250, 610, 997, 1068, 729, 283, 46, 1, 11, 80, 345, 980, 1882, 2501, 2238, 1285, 421
Offset: 1
Examples
First five rows: 1 2...1 3...4....1 4...8....7....1 5...14...18...11...1 First three polynomials u(n,x): 1, 2 + x, 3 + 4x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210231 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210232 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments