A210232 Triangle of coefficients of polynomials v(n,x) jointly generated with A210231; see the Formula section.
1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 16, 25, 18, 5, 6, 24, 48, 54, 30, 6, 7, 33, 84, 123, 106, 47, 7, 8, 44, 132, 246, 282, 194, 70, 8, 9, 56, 198, 438, 637, 594, 336, 100, 9, 10, 70, 280, 730, 1272, 1504, 1170, 556, 138, 10, 11, 85, 385, 1140, 2337, 3337, 3301
Offset: 1
Examples
First five rows: 1 2...2 3...5....3 4...10...10...4 5...16...25...16...5 First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210231 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210232 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments