A210236 Triangle of coefficients of polynomials v(n,x) jointly generated with A210235; see the Formula section.
1, 3, 2, 6, 8, 3, 11, 22, 16, 4, 19, 52, 57, 28, 5, 32, 112, 166, 124, 45, 6, 53, 228, 428, 432, 241, 68, 7, 87, 446, 1018, 1300, 984, 432, 98, 8, 142, 848, 2285, 3540, 3397, 2036, 728, 136, 9, 231, 1578, 4912, 8964, 10443, 7962, 3914, 1168, 183, 10
Offset: 1
Examples
First five rows: 1 3....2 6....8....3 11...22...16...4 19...52...57...28...5 First three polynomials v(n,x): 1, 3 + 2x , 6 + 8x + 3x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210235 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210236 *)
Formula
u(n,x)=x*u(n-1,x)+v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1
where u(1,x)=1, v(1,x)=1.
Comments