This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210238 #27 Apr 28 2016 11:29:32 %S A210238 1,2,1,3,6,1,4,12,6,12,1,5,20,20,30,30,20,1,6,30,30,15,60,120,20,60, %T A210238 90,30,1,7,42,42,42,105,210,105,245,420,140,105,210,42,1,8,56,56,224, %U A210238 28,336,336,280,168,168,840,420,1120,70,1120,560,168,420,56,1 %N A210238 Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237. %C A210238 Multiplicity D(n) of multinomial coefficient M(n) is the number of ways the same value of M(n)=n!/(m1!*m2!*..*mk!) is obtained by distributing n identical balls into k distinguishable bins. %C A210238 Differs from A209936 after a(21). %C A210238 Differs from A035206 after a(36). %C A210238 The checksum relationship: sum(M(n)*D(n)) = k^n %C A210238 The number of terms per row (for each value of n starting with n=1) forms sequence A070289. %H A210238 Sergei Viznyuk, <a href="http://phystech.com/ftp/s_A210238.c">C-program</a> for the sequence. %e A210238 1 %e A210238 2, 1 %e A210238 3, 6, 1 %e A210238 4, 12, 6, 12, 1 %e A210238 5, 20, 20, 30, 30, 20, 1 %e A210238 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1 %e A210238 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1 %e A210238 Thus for n=3 (third row) the same value of multinomial coefficient follows from the following combinations: %e A210238 3!/(3!0!0!) 3!/(0!3!0!) 3!/(0!0!3!) (i.e. multiplicity=3) %e A210238 3!/(2!1!0!) 3!/(2!0!1!) 3!/(0!2!1!) 3!/(0!1!2!) 3!/(1!0!2!) 3!/(1!2!0!) (i.e. multiplicity=6) %e A210238 3!/(1!1!1!) (i.e. multiplicity=1) %t A210238 Table[Last/@Tally[Multinomial@@@Compositions[k,k]],{k,8}] (* _Wouter Meeussen_, Mar 09 2013 *) %Y A210238 Cf. A210237, A209936, A035206, A070289. %K A210238 nonn,tabf %O A210238 1,2 %A A210238 _Sergei Viznyuk_, Mar 18 2012