cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A210238 Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237.

This page as a plain text file.
%I A210238 #27 Apr 28 2016 11:29:32
%S A210238 1,2,1,3,6,1,4,12,6,12,1,5,20,20,30,30,20,1,6,30,30,15,60,120,20,60,
%T A210238 90,30,1,7,42,42,42,105,210,105,245,420,140,105,210,42,1,8,56,56,224,
%U A210238 28,336,336,280,168,168,840,420,1120,70,1120,560,168,420,56,1
%N A210238 Triangle of multiplicities D(n) of multinomial coefficients corresponding to sequence A210237.
%C A210238 Multiplicity D(n) of multinomial coefficient M(n) is the number of ways the same value of M(n)=n!/(m1!*m2!*..*mk!) is obtained by distributing n identical balls into k distinguishable bins.
%C A210238 Differs from A209936 after a(21).
%C A210238 Differs from A035206 after a(36).
%C A210238 The checksum relationship: sum(M(n)*D(n)) = k^n
%C A210238 The number of terms per row (for each value of n starting with n=1) forms sequence A070289.
%H A210238 Sergei Viznyuk, <a href="http://phystech.com/ftp/s_A210238.c">C-program</a> for the sequence.
%e A210238 1
%e A210238 2, 1
%e A210238 3, 6, 1
%e A210238 4, 12, 6, 12, 1
%e A210238 5, 20, 20, 30, 30, 20, 1
%e A210238 6, 30, 30, 15, 60, 120, 20, 60, 90, 30, 1
%e A210238 7, 42, 42, 42, 105, 210, 105, 245, 420, 140, 105, 210, 42, 1
%e A210238 Thus for n=3 (third row) the same value of multinomial coefficient follows from the following combinations:
%e A210238 3!/(3!0!0!) 3!/(0!3!0!) 3!/(0!0!3!) (i.e. multiplicity=3)
%e A210238 3!/(2!1!0!) 3!/(2!0!1!) 3!/(0!2!1!) 3!/(0!1!2!) 3!/(1!0!2!) 3!/(1!2!0!)  (i.e. multiplicity=6)
%e A210238 3!/(1!1!1!) (i.e. multiplicity=1)
%t A210238 Table[Last/@Tally[Multinomial@@@Compositions[k,k]],{k,8}] (* _Wouter Meeussen_, Mar 09 2013 *)
%Y A210238 Cf. A210237, A209936, A035206, A070289.
%K A210238 nonn,tabf
%O A210238 1,2
%A A210238 _Sergei Viznyuk_, Mar 18 2012