This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210249 #35 Aug 12 2025 12:17:57 %S A210249 1,0,0,1,1,3,4,8,10,18,23,37,47,71,90,131,164,230,288,393,488,653,807, %T A210249 1060,1303,1686,2063,2637,3210,4057,4920,6158,7434,9228,11098,13671, %U A210249 16380,20040,23928,29098,34624,41869,49668,59755,70667,84626,99795,118991 %N A210249 Number of partitions of n in which all parts are less than n/2. %C A210249 Also, a(n) gives the number of partitions of 2*n in which all parts are even and less than n. %C A210249 Also, number of nonpalindromic partitions of n, n >= 1. In other words: a(n) is the number of partitions of n into parts which cannot be listed in palindromic order, n >= 1. - _Omar E. Pol_, Jan 11 2014 %H A210249 David A. Corneth, <a href="/A210249/b210249.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from Alois P. Heinz) %F A210249 a(n) = A000041(n) - A025065(n), n >= 1. - _Omar E. Pol_, Jan 11 2014 %e A210249 a(7) = 8, because 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1 = 1+1+1+1+1+1+1, exhausting the partitions of the indicated class for n=7. %p A210249 b:= proc(n, i) option remember; %p A210249 if n=0 then 1 %p A210249 elif i<1 then 0 %p A210249 else b(n, i-1) +`if`(i>n, 0, b(n-i, i)) %p A210249 fi %p A210249 end: %p A210249 a:= n-> b(n, ceil(n/2)-1): %p A210249 seq (a(n), n=0..50); # _Alois P. Heinz_, Mar 19 2012 %t A210249 b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[n, Ceiling[n/2]-1]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Jan 09 2016, after _Alois P. Heinz_ *) %t A210249 Table[Count[IntegerPartitions[n],_?(Max[#]<n/2&)],{n,0,50}] (* _Harvey P. Dale_, Aug 12 2025 *) %Y A210249 Row sums of triangle A124278, for n >= 3. %Y A210249 Cf. A000041, A025065. %K A210249 nonn %O A210249 0,6 %A A210249 _L. Edson Jeffery_, Mar 19 2012 %E A210249 More terms from _Alois P. Heinz_, Mar 19 2012