This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210252 #46 Feb 18 2025 05:56:33 %S A210252 0,0,0,0,0,1,0,0,0,4,0,0,0,3,24,0,0,0,0,33,188,0,0,0,0,13,338,1705,0, %T A210252 0,0,0,0,252,3580,16980,0,0,0,0,0,68,3740,39525,180670,0,0,0,0,0,0, %U A210252 1938,51300,452865,2020120,0,0,0,0,0,0,399,38076,685419,5354832,23478426,0,0,0,0,0,0,0,15180,646415,9095856,65022840,281481880,0,0,0,0,0,0,0,2530,373175,10215450,120872850,807560625,3461873536,0,0,0,0,0,0,0,0,121095,7580040,155282400,1614234960,10224817515,43494961404 %N A210252 Triangle read by rows: T(n,k) is the number of c-nets with n+1 faces and k+1 vertices, 1 <= k <= n. But see A290326 for a better version. %C A210252 c-nets are 3-connected rooted planar maps. This array also counts simple triangulations. %C A210252 Table in Mullin & Schellenberg has incorrect values T(14,14) = 43494961412, T(15,13) = 21697730849, T(15,14) = 131631305614, T(15,15) = 556461655783. - _Sean A. Irvine_, Sep 28 2015 %C A210252 This triangle is based on a mis-reading of the Mullin-Schellenberg table. See A290326 for a better version. - _N. J. A. Sloane_, Jul 28 2017 %H A210252 Gheorghe Coserea, <a href="/A210252/b210252.txt">Rows n = 1..100, flattened</a> %H A210252 R. C. Mullin, P. J. Schellenberg, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80007-9">The enumeration of c-nets via quadrangulations</a>, J. Combinatorial Theory 4 1968 259--276. MR0218275 (36 #1362). %F A210252 T(n,m) = Sum_{k=0..m-1} Sum_{j=0..n-1} (-1)^(k+j+1) * ((k+j+2)!/(2!*k!*j!)) * (binomial(2*n, m-k-1) * binomial(2*m, n-j-1) - 4 * binomial(2*n-1, m-k-2) * binomial(2*m-1, n-j-2)) if (n+2)/2 < m <= n and 0 otherwise. - _Sean A. Irvine_, Sep 28 2015 %e A210252 Triangle begins: %e A210252 n\k %e A210252 [1] 0 %e A210252 [2] 0 0 %e A210252 [3] 0 0 1 %e A210252 [4] 0 0 0 4 %e A210252 [5] 0 0 0 3 24 %e A210252 [6] 0 0 0 0 33 188 %e A210252 [7] 0 0 0 0 13 338 1705 %e A210252 [8] 0 0 0 0 0 252 3580 16980 %e A210252 [9] 0 0 0 0 0 68 3740 39525 180670 %e A210252 [10] 0 0 0 0 0 0 1938 51300 452865 2020120 %e A210252 [11] 0 0 0 0 0 0 399 38076 685419 5354832 23478426 %e A210252 [12] 0 0 0 0 0 0 0 15180 646415 9095856 65022840 281481880 %e A210252 [13] 0 0 0 0 0 0 0 2530 373175 10215450 120872850 807560625 3461873536 %e A210252 [14] 0 0 0 0 0 0 0 0 121095 7580040 155282400 1614234960 10224817515 43494961404 %e A210252 ... %o A210252 (PARI) %o A210252 T(n,m) = { %o A210252 if (m <= 1+n\2 || n < 3, return(0)); %o A210252 sum(k=0, m-1, sum(j=0, n-1, %o A210252 (-1)^((k+j+1)%2) * binomial(k+j,k)*(k+j+1)*(k+j+2)/2* %o A210252 (binomial(2*n, m-k-1) * binomial(2*m, n-j-1) - %o A210252 4 * binomial(2*n-1, m-k-2) * binomial(2*m-1, n-j-2)))); %o A210252 }; %o A210252 concat(vector(14, n, vector(n,m, T(n,m)))) \\ _Gheorghe Coserea_, Jan 08 2017 %Y A210252 Right-hand edge is A001506. %Y A210252 See A290326 for a better version. %K A210252 nonn,tabl %O A210252 1,10 %A A210252 _N. J. A. Sloane_, Mar 19 2012 %E A210252 a(105)=T(14,14) corrected by _Sean A. Irvine_, Sep 28 2015 %E A210252 Name changed by _Gheorghe Coserea_, Jul 23 2017