A210287 Triangle of coefficients of polynomials v(n,x) jointly generated with A209999; see the Formula section.
1, 3, 1, 6, 6, 1, 11, 18, 10, 1, 19, 45, 41, 15, 1, 32, 100, 130, 80, 21, 1, 53, 208, 352, 310, 141, 28, 1, 87, 413, 866, 994, 652, 231, 36, 1, 142, 794, 1991, 2828, 2429, 1253, 358, 45, 1, 231, 1490, 4358, 7391, 7871, 5348, 2248, 531, 55, 1, 375, 2745
Offset: 1
Examples
First five rows: 1 3....1 6....6....1 11...18...10...1 19...45...41...15...1 First three polynomials v(n,x): 1, 3 + x , 6 + 6x + x^2.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A209999 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210287 *)
Formula
u(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Comments