This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210325 #24 Aug 29 2021 02:00:52 %S A210325 0,0,0,0,6,56,343,1534,6067,22162,76899,257792,843616,2712241,8606426, %T A210325 27040628,84311895 %N A210325 Number of 4-divided words of length n over a 3-letter alphabet. %C A210325 See A210109 for further information. %C A210325 Row sums of the following table which shows how many words of length n over a 3-letter alphabet are 4-divided in k different ways: %C A210325 6; %C A210325 34, 13, 9; %C A210325 159, 75, 51, 20, 13, 17, 5, 3; %C A210325 500, 287, 266, 130, 71, 103, 37, 35, 33, 22, 15, 14, 13, 2, 3, 1, 2; %C A210325 - _R. J. Mathar_, Mar 25 2012 %D A210325 Computed by David Scambler, Mar 19 2012 %o A210325 (Python) %o A210325 from itertools import product, combinations, permutations %o A210325 def is4div(b): %o A210325 for i, j, k in combinations(range(1, len(b)), 3): %o A210325 divisions = [b[:i], b[i:j], b[j:k], b[k:]] %o A210325 all_greater = True %o A210325 for p, bp in enumerate(permutations(divisions)): %o A210325 if p == 0: continue %o A210325 if b >= "".join(bp): all_greater = False; break %o A210325 if all_greater: return True %o A210325 return False %o A210325 def a(n): return sum(is4div("".join(b)) for b in product("012", repeat=n)) %o A210325 print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Aug 28 2021 %Y A210325 Cf. A210109, A210324, A210326. %K A210325 nonn,more %O A210325 1,5 %A A210325 _N. J. A. Sloane_, Mar 20 2012 %E A210325 a(14)-a(17) from _Michael S. Branicky_, Aug 28 2021