This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210326 #21 Aug 28 2021 12:45:53 %S A210326 0,0,0,0,0,0,15,166,1135,5865,26170,105224,396082,1419981,4916112 %N A210326 Number of 5-divided words of length n over a 3-letter alphabet. %C A210326 See A210109 for further information. %C A210326 Row sums of the following table which shows how many words of length n over a 3-letter alphabet are 5-divided in k>=1 different ways: %C A210326 15; %C A210326 103,43,20; %C A210326 546,236,162,84,28,51,16,8,5; %C A210326 2118,1211,848,480,... %C A210326 - _R. J. Mathar_, Mar 25 2012 %D A210326 Computed by David Scambler, Mar 19 2012 %o A210326 (Python) %o A210326 from itertools import product, combinations, permutations %o A210326 def is5div(b): %o A210326 for i, j, k, l in combinations(range(1, len(b)), 4): %o A210326 divisions = [b[:i], b[i:j], b[j:k], b[k:l], b[l:]] %o A210326 all_greater = True %o A210326 for p, bp in enumerate(permutations(divisions)): %o A210326 if p == 0: continue %o A210326 if b >= "".join(bp): all_greater = False; break %o A210326 if all_greater: return True %o A210326 return False %o A210326 def a(n): return sum(is5div("".join(b)) for b in product("012", repeat=n)) %o A210326 print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Aug 28 2021 %Y A210326 Cf. A210109, A210324, A210325. %K A210326 nonn,more %O A210326 1,7 %A A210326 _N. J. A. Sloane_, Mar 20 2012 %E A210326 a(14)-a(15) from _Michael S. Branicky_, Aug 28 2021