This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A210341 #39 Mar 16 2023 12:23:09 %S A210341 1,1,1,1,2,1,1,3,4,1,1,5,9,8,1,1,8,25,27,16,1,1,13,64,125,81,32,1,1, %T A210341 21,169,512,625,243,64,1,1,34,441,2197,4096,3125,729,128,1,1,55,1156, %U A210341 9261,28561,32768,15625,2187,256,1,1,89,3025,39304,194481,371293 %N A210341 Triangle generated by T(n,k) = Fibonacci(n-k+2)^k. %C A210341 Number of tilings of an nXk chessboard using monomers and dimers of a fixed orientation. This is easy to see because the board here consists of k independent strips of length n. - _Ralf Stephan_, May 22 2014 %C A210341 Row sums = A210342 %C A210341 Central coefficients = A067966. %C A210341 This triangle is related to the infinite Vandermonde matrix %C A210341 V = [F(i+2)^j]_(i,j>=0) generated by Fibonacci numbers: %C A210341 1, 1, 1, 1, 1, 1, 1 %C A210341 1, 2, 4, 8, 16, 32, 64 %C A210341 1, 3, 9, 27, 81, 243, 729 %C A210341 1, 5, 25, 125, 625, 3125, 15625 %C A210341 1, 8, 64, 512, 4096, 32768, 262144 %C A210341 1, 13, 169, 2197, 28561, 371293, 4826809 %C A210341 1, 21, 441, 9261, 194481, 4084101, 85766121 %C A210341 The generating series of the columns can be expressed in terms of Fibonomial coefficients (A010048) (see Riordan's paper). %H A210341 Vincenzo Librandi, <a href="/A210341/b210341.txt">Rows n = 0..90, flattened</a> %H A210341 J. Riordan, <a href="http://dx.doi.org/10.1215/S0012-7094-62-02902-2">Generating functions for powers of Fibonacci numbers</a>, Duke. Math. J. 29 (1962) 5-12. %F A210341 G.f.: Sum_{k>=0} x^k/(1-Fibonacci(k+2)*x*y). %e A210341 Triangle begins: %e A210341 1 %e A210341 1, 1 %e A210341 1, 2, 1 %e A210341 1, 3, 4, 1 %e A210341 1, 5, 9, 8, 1 %e A210341 1, 8, 25, 27, 16, 1 %e A210341 1, 13, 64, 125, 81, 32, 1 %e A210341 1, 21, 169, 512, 625, 243, 64, 1 %e A210341 1, 34, 441, 2197, 4096, 3125, 729, 128, 1 %t A210341 Flatten[Table[Fibonacci[n-k+2]^k,{n,0,20},{k,0,n}]] %o A210341 (Maxima) create_list(fib(n-k+2)^k,n,0,20,k,0,n); %o A210341 (Magma) [Fibonacci(n-k+2)^k: k in [0..n], n in [0..10]]; /* Alternatively: */ [[Fibonacci(n-k+2)^k: k in [0..n]]: n in [0..8]]; // _Bruno Berselli_, Mar 28 2012 %Y A210341 Cf. A103323, A067966, A210342, A210343. %K A210341 nonn,tabl,easy %O A210341 0,5 %A A210341 _Emanuele Munarini_, Mar 20 2012